login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x/(1 - 8*x - 11*x^2).
1

%I #40 Dec 23 2023 14:27:36

%S 0,1,8,75,688,6329,58200,535219,4921952,45263025,416245672,3827858651,

%T 35201571600,323719017961,2976969431288,27376664647875,

%U 251759980927168,2315223158543969,21291145058550600,195796615212388459,1800575517343164272,16558366906081587225,152273265939427504792

%N Expansion of x/(1 - 8*x - 11*x^2).

%H Vincenzo Librandi, <a href="/A015578/b015578.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,11).

%F a(n) = 8*a(n-1) + 11*a(n-2).

%t Transpose[NestList[{Last[#],8Last[#]+11First[#]}&, {0,1},20]] [[1]] (* _Harvey P. Dale_, Mar 14 2011 *)

%t LinearRecurrence[{8, 11}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 14 2012 *)

%o (Sage) [lucas_number1(n,8,-11) for n in range(0, 19)] # _Zerinvary Lajos_, Apr 25 2009

%o (Magma) [n le 2 select n-1 else 8*Self(n-1) + 11*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 14 2012

%o (PARI) x='x+O('x^30); concat([0], Vec(x/(1-8*x-11*x^2))) \\ _G. C. Greubel_, Jan 06 2018

%K nonn,easy

%O 0,3

%A _Olivier Gérard_