Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 30 2023 23:40:50
%S 0,1,4,27,152,905,5292,31123,182704,1073169,6302420,37014539,
%T 217384776,1276699033,7498028668,44035804035,258621531488,
%U 1518879970337,8920356727716,52389106584571,307680350343160
%N Expansion of x/(1 - 4*x - 11*x^2).
%H Vincenzo Librandi, <a href="/A015534/b015534.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,11).
%F a(n) = 4*a(n-1) + 11*a(n-2).
%t Join[{a=0,b=1},Table[c=4*b+11*a;a=b;b=c,{n,40}]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 29 2011 *)
%t LinearRecurrence[{4,11},{0,1},30] (* _Vincenzo Librandi_, Jun 19 2012 *)
%o (Sage) [lucas_number1(n,4,-11) for n in range(0, 20)] # _Zerinvary Lajos_, Apr 23 2009
%o (Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+11*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 19 2012
%o (PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-11*x^2))) \\ _G. C. Greubel_, Jan 01 2018
%K nonn,easy
%O 0,3
%A _Olivier Gérard_