login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

q-Fibonacci numbers for q=4.
13

%I #28 Sep 08 2022 08:44:40

%S 0,1,1,5,21,341,5717,354901,23771733,5838469717,1563742763605,

%T 1532083548256853,1641235215638133333,6427665390003549698645,

%U 27541785384957544314239573,431380864280640133787922528853

%N q-Fibonacci numbers for q=4.

%H Vincenzo Librandi, <a href="/A015461/b015461.txt">Table of n, a(n) for n = 0..80</a>

%F a(n) = a(n-1) + 4^(n-2)*a(n-2).

%F Associated constant: C_4 = lim_{n->infinity} a(n)*a(n-2)/a(n-1)^2 = 1.094337777197221121533242886... . - _Benoit Cloitre_, Aug 30 2003

%F a(n)*a(n+3) - a(n)*a(n+2) - 4*a(n+1)*a(n+2) + 4*a(n+1)^2 = 0. - _Emanuele Munarini_, Dec 05 2017

%p q:=4; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # _G. C. Greubel_, Dec 16 2019

%t RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*4^(n-2)}, a, {n, 30}] (* _Vincenzo Librandi_, Nov 08 2012 *)

%t F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];

%t Table[F[n, 4], {n, 0, 20}] (* _G. C. Greubel_, Dec 16 2019 *)

%o (Magma) [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(4^(n-2)): n in [1..20]]; // _Vincenzo Librandi_, Nov 08 2012

%o (PARI) q=4; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ _G. C. Greubel_, Dec 16 2019

%o (Sage)

%o def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))

%o [F(n,4) for n in (0..20)] # _G. C. Greubel_, Dec 16 2019

%o (GAP) q:=4;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # _G. C. Greubel_, Dec 16 2019

%Y q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), this sequence (q=4), A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), A015469 (q=11), A015470 (q=12).

%K nonn,easy

%O 0,4

%A _Olivier Gérard_