%I
%S 0,1,1,8,15,71,176,673,1905,6616,19951,66263,205920,669761,2111201,
%T 6799528,21577935,69174631,220220176,704442593,2245983825,7177081976,
%U 22898968751,73138542583,233431323840,745401121921,2379420388801
%N Generalized Fibonacci numbers: a(n) = a(n1) + 7*a(n2), a(0)=0, a(1)=1.
%C One obtains A015523 through a binomial transform, and A197189 by shifting one place left (starting 1,1,8 with offset 0) followed by a binomial transform.  _R. J. Mathar_, Oct 11 2011
%C The compositions of n in which each positive integer is colored by one of p different colors are called pcolored compositions of n. For n>=2, 8*a(n1) equals the number of 8colored compositions of n, with all parts >=2, such that no adjacent parts have the same color.  _Milan Janjic_, Nov 26 2011
%C Pisano period lengths: 1, 3, 8, 6, 4, 24, 1, 6, 24, 12, 60, 24, 12, 3, 8, 6, 288, 24, 120, 12, ...  _R. J. Mathar_, Aug 10 2012
%H Vincenzo Librandi, <a href="/A015442/b015442.txt">Table of n, a(n) for n = 0..1000</a>
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 14.8 "Strings with no two consecutive nonzero digits", pp.317318
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,7).
%F O.g.f.: x/(1x7x^2).  _R. J. Mathar_, May 06 2008
%F a(n) = ( ((1+sqrt(29))/2)^(n+1)  ((1sqrt(29))/2)^(n+1) )/sqrt(29).
%F a(n) = 8*a(n2) + 7*a(n3) with characteristic polynomial x^3  8*x  7.  _Roger L. Bagula_, May 30 2007
%F a(n+1) = Sum_{k=0..n} A109466(n,k)*(7)^(nk).  _Philippe Deléham_, Oct 26 2008
%F a(n) = (Sum_{1<=k<=n, k odd} C(n,k)*29^((k1)/2))/2^(n1).  _Vladimir Shevelev_, Feb 05 2014
%t (* recursion *) A015442[0] := 0; A015442[1] := 1; A015442[ 2] := 1; A015442[n_] := A015442[n] = 8*A015442[n  2] + 7*A015442[n  3]; Table[A015442[n], {n, 0, 25}] (* _Roger L. Bagula_ *)
%t (* matrix representation *) mat15442 = {{0, 1, 0}, {0, 0, 1}, {7, 8, 0}}; w15442[ 0] = {0, 1, 1}; w15442[n_] := w15442[n] = mat15442.w15442[n  1]; Table[w15442[n][[1]], {n, 0, 25}] (* _Roger L. Bagula_ *)
%t LinearRecurrence[{1, 7}, {0, 1}, 30] (* _Vincenzo Librandi_, Oct 17 2012 *)
%o (Sage) [lucas_number1(n,1,7) for n in range(0, 27)] # _Zerinvary Lajos_, Apr 22 2009
%o (MAGMA) I:=[0, 1]; [n le 2 select I[n] else Self(n1) + 7*Self(n2): n in [1..40]]; // _Vincenzo Librandi_, Oct 17 2012
%o (PARI) concat(0,Vec(1/(1x7*x^2)+O(x^99))) \\ _Charles R Greathouse IV_, Mar 12 2014
%Y Cf. A015440, A015441.
%K nonn,easy,changed
%O 0,4
%A _Olivier Gérard_
