login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gaussian binomial coefficient [ n,12 ] for q=-9.
2

%I #20 Sep 08 2022 08:44:40

%S 1,254186582833,72687171253825493271271,

%T 20500882161928535478431441379312055,

%U 5790937276726544621284284010937628428554805020,1635504033452004972838895174119166771419593874338342173788,461915515256190228639422934162753182948200513062452706826160310202324

%N Gaussian binomial coefficient [ n,12 ] for q=-9.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H Vincenzo Librandi, <a href="/A015432/b015432.txt">Table of n, a(n) for n = 12..100</a>

%F a(n) = Product_{i=1..12} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - _Vincenzo Librandi_, Nov 06 2012

%t Table[QBinomial[n, 12, -9], {n, 12, 20}] (* _Vincenzo Librandi_, Nov 06 2012 *)

%o (Sage) [gaussian_binomial(n,12,-9) for n in range(12,17)] # _Zerinvary Lajos_, May 28 2009

%o (Magma) r:=12; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 06 2012

%K nonn,easy

%O 12,2

%A _Olivier Gérard_