|
|
A015425
|
|
Gaussian binomial coefficient [ n,12 ] for q=-4.
|
|
3
|
|
|
1, 13421773, 240191982810781, 3967756584209486471005, 66828959857649638516515454045, 1120110037194182450025632158559979613, 18796917128597217472986991275660647159371869
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
12,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 12..150
|
|
FORMULA
|
a(n) = Product_{i=1..12} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
|
|
MATHEMATICA
|
Table[QBinomial[n, 12, -4], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 12, -4) for n in range(12, 19)] # Zerinvary Lajos, May 28 2009
(MAGMA) r:=12; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2012
|
|
CROSSREFS
|
Sequence in context: A330678 A250831 A184772 * A352329 A353025 A345609
Adjacent sequences: A015422 A015423 A015424 * A015426 A015427 A015428
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Olivier Gérard
|
|
STATUS
|
approved
|
|
|
|