%I #18 Sep 08 2022 08:44:39
%S 1,-1864135,3971428035705,-8312452980450674055,
%T 17436734410124346225937017,-36566366524181816928510601278855,
%U 76685521221108550544352295253436844665,-160821117514369017882638960343040332226049415,337266348340144487783661620118192764663158488484473
%N Gaussian binomial coefficient [ n,7 ] for q = -8.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015347/b015347.txt">Table of n, a(n) for n = 7..160</a>
%t Table[QBinomial[n, 7, -8], {n, 7, 20}] (* _Vincenzo Librandi_, Nov 02 2012 *)
%o (Sage) [gaussian_binomial(n,7,-8) for n in range(7,14)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=7; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // _Vincenzo Librandi_, Nov 02 2012
%K sign,easy
%O 7,2
%A _Olivier GĂ©rard_, Dec 11 1999