%I #22 Dec 07 2019 12:18:18
%S 1,478297,257363962948,136586400868021924,72598678627860564552010,
%T 38581260992855637306941215162,20503702504565185601675453268123604,
%U 10896505884544222754038383150470776581556
%N Gaussian binomial coefficient [ n,6 ] for q = -9.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015332/b015332.txt">Table of n, a(n) for n = 6..180</a>
%F G.f.: x^6/((1-x)*(1+9*x)*(1-81*x)*(1+729*x)*(1-6561*x)*(1+59049*x)*(1-531441*x)). - _Vincenzo Librandi_, Oct 30 2012
%t Table[QBinomial[n, 6, -9], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,6,-9) for n in range(6,14)] # _Zerinvary Lajos_, May 27 2009
%K nonn,easy
%O 6,2
%A _Olivier GĂ©rard_, Dec 11 1999