login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015331
Gaussian binomial coefficient [ n,6 ] for q = -8.
2
1, 233017, 62053592185, 16235267484138105, 4257017266254230145657, 1115917479276007905665796729, 292532187604809092430760283523705, 76685521221108550544352295253436844665
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
FORMULA
G.f.: x^6/((1-x)*(1+8*x)*(1-64*x)*(1+512*x)*(1-4096*x)*(1+32768*x)*(1-262144*x)). - Vincenzo Librandi, Oct 30 2012
MATHEMATICA
QBinomial[Range[6, 15], 6, -8] (* Harvey P. Dale, Nov 25 2011 *)
Table[QBinomial[n, 6, -8], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -8) for n in range(6, 14)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A128484 A257638 A116463 * A250697 A250682 A238500
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved