login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015309 Gaussian binomial coefficient [ n,5 ] for q = -5. 5
1, -2604, 8476671, -26279294704, 82254445109046, -256962886520659704, 803060432690378496546, -2509531719872244898534704, 7842306707330337276457324671, -24507195908707737696414306347204 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 5..200

Index entries for linear recurrences with constant coefficients, signature (-2604,1695855,209963000,-5299546875,-25429687500,30517578125)

FORMULA

G.f.: -x^5 / ( (x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(125*x+1)*(3125*x+1) ). - R. J. Mathar, Aug 04 2016

MATHEMATICA

Table[QBinomial[n, 5, -5], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)

PROG

(Sage) [gaussian_binomial(n, 5, -5) for n in range(5, 15)] # Zerinvary Lajos, May 27 2009

(MAGMA) r:=5; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016

CROSSREFS

Sequence in context: A031729 A001726 A109487 * A212083 A236889 A254695

Adjacent sequences:  A015306 A015307 A015308 * A015310 A015311 A015312

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 05:39 EST 2020. Contains 331104 sequences. (Running on oeis4.)