login
A015309
Gaussian binomial coefficient [ n,5 ] for q = -5.
5
1, -2604, 8476671, -26279294704, 82254445109046, -256962886520659704, 803060432690378496546, -2509531719872244898534704, 7842306707330337276457324671, -24507195908707737696414306347204
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-2604,1695855,209963000,-5299546875,-25429687500,30517578125)
FORMULA
G.f.: -x^5 / ( (x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(125*x+1)*(3125*x+1) ). - R. J. Mathar, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 5, -5], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -5) for n in range(5, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
CROSSREFS
Sequence in context: A031729 A001726 A109487 * A212083 A236889 A254695
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved