login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of Gaussian binomial coefficients for q=24.
2

%I #20 May 14 2019 14:59:43

%S 1,2,27,1204,375629,400208358,2991792531583,76486991418728216,

%T 13721923923633091909041,8419357054564884621321079882,

%U 36250698926534384563556930107015907,533815775315492783921121148190498865117564

%N Sum of Gaussian binomial coefficients for q=24.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H Vincenzo Librandi, <a href="/A015217/b015217.txt">Table of n, a(n) for n = 0..50</a>

%H Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%F a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((24^(n-1)) - 1). - _Vincenzo Librandi_, Nov 02 2012

%t Total/@Table[QBinomial[n, m, 24], {n, 0, 20}, {m, 0, n}] (* _Vincenzo Librandi_, Nov 02 2012 *)

%Y Row sums of triangle A022188.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, _Olivier Gérard_