%I #16 May 14 2019 09:36:01
%S 1,2,16,368,35872,10581824,13340150272,51103113038336,
%T 837176839011073024,41688053546681235027968,
%U 8877924639652962346524196864,5747069945873421832482391628398592,15910676414562258056085140791577932300288
%N Sum of Gaussian binomial coefficients for q=13.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015201/b015201.txt">Table of n, a(n) for n = 0..60</a>
%H Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%t Total/@Table[QBinomial[n, m, 13], {n, 0, 20}, {m, 0, n}] (* _Vincenzo Librandi_, Nov 02 2012 *)
%Y Row sums of triangle A022177.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, _Olivier GĂ©rard_