login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

q-factorial numbers for q=7.
11

%I #27 Sep 08 2022 08:44:39

%S 1,1,8,456,182400,510902400,10017774259200,1375009641495014400,

%T 1321109263548409835520000,8885253784030448738183147520000,

%U 418310711031156574478261944188764160000,137856159231156714984163673320892478249861120000

%N q-factorial numbers for q=7.

%H Vincenzo Librandi, <a href="/A015006/b015006.txt">Table of n, a(n) for n = 0..40</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F a(n) = Product_{k=1..n} (7^k-1)/(7-1).

%F a(0) = 1, a(n) = (7^n - 1)*a(n-1)/6. - _Vincenzo Librandi_, Oct 25 2012

%t RecurrenceTable[{a[1]==1, a[n]==((7^n - 1) * a[n-1])/6}, a, {n, 15}] (* _Vincenzo Librandi_, Oct 25 2012 *)

%t Table[QFactorial[n, 7], {n, 15}] (* _Bruno Berselli_, Aug 14 2013 *)

%o (Magma) [n le 1 select 1 else (7^n-1)*Self(n-1)/6: n in [1..15]]; // _Vincenzo Librandi_, Oct 25 2012

%Y Cf. A015001, A015002, A015004, A015005, A015007, A015008, A015009, A015011.

%Y Column q=7 of A069777.

%K nonn,easy

%O 0,3

%A _Olivier Gérard_

%E a(0)=1 prepended by _Alois P. Heinz_, Sep 08 2021