login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(n) = 23*a(n-1) + n.
2

%I #29 Feb 19 2024 01:52:56

%S 1,25,578,13298,305859,7034763,161799556,3721389796,85591965317,

%T 1968615202301,45278149652934,1041397442017494,23952141166402375,

%U 550899246827254639,12670682677026856712,291425701571617704392

%N a(1)=1, a(n) = 23*a(n-1) + n.

%H Vincenzo Librandi, <a href="/A014909/b014909.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (25, -47, 23).

%F a(1)=1, a(2)=25, a(3)=578, a(n) = 25*a(n-1) - 47*a(n-2) + 23*a(n-3). - _Harvey P. Dale_, Feb 05 2012

%F G.f.: -(x/((-1+x)^2*(-1+23*x))). - _Harvey P. Dale_, Feb 05 2012

%t Transpose[NestList[{First[#]+1,23Last[#]+First[#]+1}&,{1,1},20]][[2]] (* or *) LinearRecurrence[{25,-47,23},{1,25,578},20] (* _Harvey P. Dale_, Feb 05 2012 *)

%o (Magma) I:=[1, 25, 578]; [n le 3 select I[n] else 25*Self(n-1)-47*Self(n-2)+23*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Feb 05 2012

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, _Olivier Gérard_