Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Sep 04 2022 09:47:08
%S 0,2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17,20,19,22,21,24,23,26,
%T 25,28,27,30,29,32,31,34,33,36,35,38,37,40,39,42,41,44,43,46,45,48,47,
%U 50,49,52,51,54,53,56,55,58,57,60,59,62,61,64,63,66,65,68,67,70
%N Fix 0; exchange even and odd numbers.
%C A self-inverse permutation of the nonnegative numbers.
%C If we ignore the first term 0, then this can be obtained as: a(n) is the smallest number different from n, not occurring earlier and coprime to n. - _Amarnath Murthy_, Apr 16 2003 [Corrected by _Alois P. Heinz_, May 06 2015]
%C a(0)=0, a(1)=2, then repeatedly subtract 1 and then add 3. - _Jon Perry_, Aug 12 2014
%C The biggest term of the pair [a(n), a(n+1)] is always even. This is the lexicographically first sequence with this property starting with a(1) = 0 and always extented with the smallest integer not yet present. - _Eric Angelini_, Feb 20 2017
%H Derek Orr, <a href="/A014681/b014681.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F G.f.: x*(2-x+x^2)/((1-x)*(1-x^2)). - _N. J. A. Sloane_
%F a(n) = n - (-1)^n = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 2. - _Henry Bottomley_, Mar 29 2000
%F a(0) = 0; a(2m+1) = 2m+2; for m > 0 a(2m) = 2m - 1. - _George E. Antoniou_, Dec 04 2001
%F a(n) = n - (-1)^n + 0^n for n >= 0. - _Bruno Berselli_, Nov 16 2010
%F E.g.f.: 1 + (x - 1)*cosh(x) + (1 + x)*sinh(x). - _Stefano Spezia_, Sep 02 2022
%t Table[n - (-1)^n, {n, 1, 60}]
%t Join[{0},LinearRecurrence[{1, 1, -1},{2, 1, 4},69]] (* _Ray Chandler_, Sep 03 2015 *)
%o (PARI) a(n)=n - (-1)^n \\ _Charles R Greathouse IV_, May 06 2015
%Y Composing this permutation with A065190 gives A065164.
%Y Equals 1 + A004442.
%Y Cf. A103889.
%K nonn,easy
%O 0,2
%A _Mohammad K. Azarian_