Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #67 Sep 09 2022 16:17:52
%S 0,8,40,96,176,280,408,560,736,936,1160,1408,1680,1976,2296,2640,3008,
%T 3400,3816,4256,4720,5208,5720,6256,6816,7400,8008,8640,9296,9976,
%U 10680,11408,12160,12936,13736,14560,15408,16280,17176,18096,19040,20008,21000,22016
%N Even octagonal numbers: a(n) = 4*n*(3*n-1).
%C 8 times pentagonal numbers. - _Omar E. Pol_, Dec 11 2008
%C Sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - _Omar E. Pol_, Jul 18 2012
%C The sequence forms the even nesting cube-frames (see illustrations in A000567), which separate and appear according to formula along the axes on the zero-centered and one-centered hexagonal number spirals, as well as the axes of the zero-centered and one-centered square number spirals. See illustrations in links. - _John Elias_, Jul 20 2022
%H G. C. Greubel, <a href="/A014642/b014642.txt">Table of n, a(n) for n = 0..1000</a>
%H John Elias, <a href="/A014642/a014642_1.png">Octagonal Nesting Cubes on the Hexagonal Number Spiral</a> <a href="/A014642/a014642_2.png">Octagonal Nesting Cubes on the Square Number Spiral</a>
%H Craig Knecht, <a href="/A014642/a014642.png">Number of positions the remaining tiles can occupy in a 4*n length polyiamond bilayer when one tile is missing</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = A000326(n)*8. - _Omar E. Pol_, Dec 11 2008
%F a(n) = A049450(n)*4 = A033579(n)*2. - _Omar E. Pol_, Dec 13 2008
%F a(n) = a(n-1) + 24*n - 16 (with a(0)=0). - _Vincenzo Librandi_, Nov 20 2010
%F G.f.: x*(8+16*x)/(1-3*x+3*x^2-x^3). - _Colin Barker_, Jan 06 2012
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _G. C. Greubel_, Jun 07 2017
%F E.g.f.: 4*x*(2 + 3*x)*exp(x). - _G. C. Greubel_, Oct 09 2019
%F From _Amiram Eldar_, Mar 24 2021: (Start)
%F Sum_{n>=1} 1/a(n) = 3*log(3)/8 - Pi/(8*sqrt(3)).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 - Pi/(4*sqrt(3)). (End)
%p seq(8*binomial(3*n,2)/3, n=0..50); # _G. C. Greubel_, Oct 09 2019
%t LinearRecurrence[{3,-3,1},{0,8,40}, 50] (* _G. C. Greubel_, Jun 07 2017 *)
%t PolygonalNumber[8,Range[0,90,2]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 19 2020 *)
%o (PARI) vector(51, n, 8*binomial(3*(n-1),2)/3 ) \\ _G. C. Greubel_, Jun 07 2017
%o (Magma) [8*Binomial(3*n,2)/3: n in [0..50]]; // _G. C. Greubel_, Oct 09 2019
%o (Sage) [8*binomial(3*n,2)/3 for n in (0..50)] # _G. C. Greubel_, Oct 09 2019
%o (GAP) List([0..50], n-> 8*Binomial(3*n,2)/3); # _G. C. Greubel_, Oct 09 2019
%Y Cf. A000567, A000326, A001082, A014641, A014793, A014794, A033579, A049450.
%K nonn,easy
%O 0,2
%A _Mohammad K. Azarian_
%E More terms from _Patrick De Geest_