login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd pentagonal numbers.
5

%I #39 Jan 13 2024 03:33:31

%S 1,5,35,51,117,145,247,287,425,477,651,715,925,1001,1247,1335,1617,

%T 1717,2035,2147,2501,2625,3015,3151,3577,3725,4187,4347,4845,5017,

%U 5551,5735,6305,6501,7107,7315,7957,8177,8855,9087,9801,10045,10795,11051,11837

%N Odd pentagonal numbers.

%H Vincenzo Librandi, <a href="/A014632/b014632.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, -2, -1, 1).

%F a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).

%F a(n) = 48+2*a(n-2)-a(n-4). - _Ant King_, Aug 16 2011

%F G.f.: (1+4*x+28*x^2+8*x^3+7*x^4)/((1+x)^2*(1-x)^3). - _R. J. Mathar_, Jul 25 2009

%F a(n) = (3*(-1)^n+12*n+1)*((-1)^n+4*n+1)/8. - _Ant King_, Aug 16 2011

%F Sum_{n>=0} 1/a(n) = Pi/4 + 3*log(3)/2 + sqrt(3)*log(2-sqrt(3))/2. - _Amiram Eldar_, Jan 13 2024

%p A014632:=n->(3*(-1)^n+12*n+1)*((-1)^n+4*n+1)/8: seq(A014632(n), n=0..100); # _Wesley Ivan Hurt_, Apr 28 2017

%t Select[Table[n (3 n - 1)/2, {n,100}], OddQ] (* _Harvey P. Dale_, Feb 03 2011 *)

%o (Magma) [1/8*(11+3*(-1)^(n+1)-12*(n+1))*(3+(-1)^(n+1)-4*(n+1)): n in [0..40]]; // _Vincenzo Librandi_, Aug 17 2011

%Y Cf. A000326, A014633.

%K nonn,easy

%O 0,2

%A _Mohammad K. Azarian_

%E More terms from _Patrick De Geest_