OFFSET
0,4
COMMENTS
Number of partitions of n + 10 into 4 distinct parts one of which is 3. - Michael Somos, Nov 03 2011
Number of partitions of n into 3 or fewer distinct parts. - Mo Li, Sep 27 2019
LINKS
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
FORMULA
G.f.: (1/(1-x^3)-x^2)/(1-x)/(1-x^2).
a(-n) = a(n). a(n) = 1 + A069905(n). - Michael Somos, Nov 03 2011
EXAMPLE
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + ...
10 = 4 + 3 + 2 + 1, 11 = 5 + 3 + 2 + 1, 12 = 6 + 3 + 2 + 1, 13 = 7 + 3 + 2 + 1 = 5 + 4 + 3 + 1, 14 = 8 + 3 + 2 + 1 = 5 + 4 + 3 + 2, 15 = 9 + 3 + 2 + 1 = 6 + 5 + 3 + 1 = 6 + 4 + 3 + 2.
MATHEMATICA
Floor[Range[0, 70]^2/12+5/4] (* Harvey P. Dale, Oct 22 2013 *)
Table[Length[Select[IntegerPartitions[k, 3], DuplicateFreeQ]], {k, 1, 50}] (* Mo Li, Sep 27 2019 *)
PROG
(PARI) {a(n) = (n^2 + 3) \ 12 + 1} /* Michael Somos, Nov 03 2011 */
CROSSREFS
It may be only a coincidence that the first 11 terms reproduce all available data on Vassiliev invariants from diagrams with u=2 univalent vertices, as recorded in the Kneissler paper.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
STATUS
approved