login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Even Fibonacci numbers; or, Fibonacci(3*n).
44

%I #197 Jan 05 2025 19:51:34

%S 0,2,8,34,144,610,2584,10946,46368,196418,832040,3524578,14930352,

%T 63245986,267914296,1134903170,4807526976,20365011074,86267571272,

%U 365435296162,1548008755920,6557470319842,27777890035288,117669030460994,498454011879264,2111485077978050

%N Even Fibonacci numbers; or, Fibonacci(3*n).

%C a(n) = 3^n*b(n;2/3) = -b(n;-2), but we have 3^n*a(n;2/3) = F(3n+1) = A033887 and a(n;-2) = F(3n-1) = A015448, where a(n;d) and b(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (the argument "d" of a(n;d) and b(n;d) is abbreviation of the symbol "delta") defined by the following equivalent relations: (1 + d*((sqrt(5) - 1)/2))^n = a(n;d) + b(n;d)*((sqrt(5) - 1)/2) equiv. a(0;d)=1, b(0;d)=0, a(n+1;d) = a(n;d) + d*b(n;d), b(n+1;d) = d*a(n;d) + (1-d)b(n;d) equiv. a(0;d)=a(1;d)=1, b(0;1)=0, b(1;d)=d, and x(n+2;d) + (d-2)*x(n+1;d) + (1-d-d^2)*x(n;d) = 0 for every n=0,1,...,d, and x=a,b equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k-1)*(-d)^k, and b(n;d) = Sum_{k=0..n} C(n,k)*(-1)^(k-1)*F(k)*d^k equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-d)^(n-k)*d^k, and b(n;d) = Sum_{k=1..n} C(n;k)*F(k)*(1-d)^(n-k)*d^k. The sequences a(n;d) and b(n;d) for special values d are connected with many known sequences: A000045, A001519, A001906, A015448, A020699, A033887, A033889, A074872, A081567, A081568, A081569, A081574, A081575, A163073 (see also the papers of Witula et al.). - _Roman Witula_, Jul 12 2012

%C For any odd k, Fibonacci(k*n) = sqrt(Fibonacci((k-1)*n) * Fibonacci((k+1)*n) + Fibonacci(n)^2). - _Gary Detlefs_, Dec 28 2012

%C The ratio of consecutive terms approaches the continued fraction 4 + 1/(4 + 1/(4 +...)) = A098317. - _Hal M. Switkay_, Jul 05 2020

%D Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.

%H T. D. Noe, <a href="/A014445/b014445.txt">Table of n, a(n) for n = 0..200</a>

%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/37-40-2012/azarianIJCMS37-40-2012.pdf">Fibonacci Identities as Binomial Sums</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876 (See Corollary 1 (v)).

%H H. H. Ferns, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-2/elementary5-2.pdf">Problem B-115</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/6-1/elementary6-1.pdf">Identities for F_{kn} and L{kn}</a>, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.

%H Ira M. Gessel and Ji Li, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Gessel/gessel6.html">Compositions and Fibonacci identities</a>, J. Int. Seq., Vol. 16 (2013), Article 13.4.5.

%H Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, <a href="https://doi.org/10.1515/math-2017-0047">Binomials Transformation Formulae of Scaled Fibonacci Numbers</a>, Open Math., Vol. 15 (2017), pp. 477-485.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibmaths.html">Mathematics of the Fibonacci Series</a>.

%H Bahar Kuloğlu, Engin Özkan, and Marin Marin, <a href="https://doi.org/10.2478/auom-2023-0023">Fibonacci and Lucas Polynomials in n-gon</a>, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.

%H Peter McCalla and Asamoah Nkwanta, <a href="https://arxiv.org/abs/1901.07092">Catalan and Motzkin Integral Representations</a>, arXiv:1901.07092 [math.NT], 2019.

%H Michael Z. Spivey and Laura L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.

%H Roman Witula and Damian Slota, <a href="http://dx.doi.org/10.2298/AADM0902310W">delta-Fibonacci numbers</a>, Appl. Anal. Discr. Math., Vol. 3, No. 2 (2009), pp. 310-329, <a href="http://www.ams.org/mathscinet-getitem?mr=2555042">MR2555042</a>.

%H Roman Witula, <a href="https://doi.org/10.1515/dema-2013-0436">Binomials transformation formulae of scaled Lucas numbers</a>, Demonstratio Math., Vol. 46 (2013), pp. 15-27.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,1).

%F a(n) = Sum_{k=0..n} binomial(n, k)*F(k)*2^k. - _Benoit Cloitre_, Oct 25 2003

%F From _Lekraj Beedassy_, Jun 11 2004: (Start)

%F a(n) = 4*a(n-1) + a(n-2), with a(-1) = 2, a(0) = 0.

%F a(n) = 2*A001076(n).

%F a(n) = (F(n+1))^3 + (F(n))^3 - (F(n-1))^3. (End)

%F a(n) = Sum_{k=0..floor((n-1)/2)} C(n, 2*k+1)*5^k*2^(n-2*k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004

%F a(n) = Sum_{k=0..n} F(n+k)*binomial(n, k). - _Benoit Cloitre_, May 15 2005

%F O.g.f.: 2*x/(1 - 4*x - x^2). - _R. J. Mathar_, Mar 06 2008

%F a(n) = second binomial transform of (2,4,10,20,50,100,250). This is 2* (1,2,5,10,25,50,125) or 5^n (offset 0): *2 for the odd numbers or *4 for the even. The sequences are interpolated. Also a(n) = 2*((2+sqrt(5))^n - (2-sqrt(5))^n)/sqrt(20). - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009

%F a(n) = 3*F(n-1)*F(n)*F(n+1) + 2*F(n)^3, F(n)=A000045(n). - _Gary Detlefs_, Dec 23 2010

%F a(n) = (-1)^n*3*F(n) + 5*F(n)^3, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - _Wolfdieter Lang_, Aug 31 2012

%F With L(n) a Lucas number, F(3*n) = F(n)*(L(2*n) + (-1)^n) = (L(3*n+1) + L(3*n-1))/5 starting at n=1. - _J. M. Bergot_, Oct 25 2012

%F a(n) = sqrt(Fibonacci(2*n)*Fibonacci(4*n) + Fibonacci(n)^2). - _Gary Detlefs_, Dec 28 2012

%F For n > 0, a(n) = 5*F(n-1)*F(n)*F(n+1) - 2*F(n)*(-1)^n. - _J. M. Bergot_, Dec 10 2015

%F a(n) = -(-1)^n * a(-n) for all n in Z. - _Michael Somos_, Nov 15 2018

%F a(n) = (5*Fibonacci(n)^3 + Fibonacci(n)*Lucas(n)^2)/4 (Ferns, 1967). - _Amiram Eldar_, Feb 06 2022

%F a(n) = 2*i^(n-1)*S(n-1,-4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(-1, x) = 0. From the simplified trisection formula. - _Gary Detlefs_ and _Wolfdieter Lang_, Mar 04 2023

%F E.g.f.: 2*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - _Stefano Spezia_, Jun 03 2024

%F a(n) = 2*F(n) + 3*Sum_{k=0..n-1} F(3*k)*F(n-k). - Yomna Bakr and _Greg Dresden_, Jun 10 2024

%e G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...

%p a:= n-> (<<0|1>, <1|1>>^(3*n))[1,2]:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 03 2023

%t Table[Fibonacci[3n], {n,0,30}] (* _Stefan Steinerberger_, Apr 07 2006 *)

%t LinearRecurrence[{4,1},{0,2},30] (* _Harvey P. Dale_, Nov 14 2021 *)

%t Table[ SeriesCoefficient[2*x/(1 - 4*x - x^2), {x, 0, n}], {n, 0, 20}] (* _Nikolaos Pantelidis_, Feb 02 2023 *)

%o (MuPAD) numlib::fibonacci(3*n) $ n = 0..30; // _Zerinvary Lajos_, May 09 2008

%o (Sage) [fibonacci(3*n) for n in range(0, 30)] # _Zerinvary Lajos_, May 15 2009

%o (Magma) [Fibonacci(3*n): n in [0..30]]; // _Vincenzo Librandi_, Apr 18 2011

%o (PARI) a(n)=fibonacci(3*n) \\ _Charles R Greathouse IV_, Oct 25 2012

%Y Cf. A000032, A000045, A001076, A049310, A111125.

%Y Cf. A001519, A001906, A015448, A020699, A033887, A033889, A074872, A081567, A081568, A081569, A081574, A081575, A098317, A163073.

%Y First differences of A099919.

%Y Third column of array A102310.

%K nonn,easy,nice,changed

%O 0,2

%A _Mohammad K. Azarian_