login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multigraphs with 5 nodes and n edges.
12

%I #22 Mar 16 2020 02:52:48

%S 1,1,3,7,17,35,76,149,291,539,974,1691,2874,4730,7620,11986,18485,

%T 27944,41550,60744,87527,124338,174403,241650,331153,448987,602853,

%U 801943,1057615,1383343,1795578,2313595,2960656,3763879,4755505,5972927,7460196,9267980

%N Number of multigraphs with 5 nodes and n edges.

%D CRC Handbook of Combinatorial Designs, 1996, p. 650.

%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).

%D J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.

%H Andrew Howroyd, <a href="/A014395/b014395.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (x^21 + x^20 + 5*x^19 + 8*x^18 + 14*x^17 + 22*x^16 + 32*x^15 + 40*x^14 + 39*x^13 + 47*x^12 + 36*x^11 + 36*x^10 + 25*x^9 + 21*x^8 + 12*x^7 + 11*x^6 + 4*x^5 + 4*x^4 + x^3 + x^2 - x + 1)/((x^6 - 1)*(x^5 - 1)^2*(x^4 - 1)^2*(x^3 - 1)^2*(x - 1)^3*(x + 1)).

%t CoefficientList[Series[PairGroupIndex[SymmetricGroup[5],s]/.Table[s[i]->1/(1-x^i),{i,1,Binomial[5,2]}],{x,0,30}],x] (* _Geoffrey Critzer_, Oct 14 2012 *)

%o (PARI) concat([1], G(5, 40)) \\ See A191646 for G. - _Andrew Howroyd_, Mar 15 2020

%Y Row 5 of A192517.

%Y Cf. A001399, A003082, A014396, A014397, A014398.

%K easy,nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Dec 23 1999