Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 16 2020 11:27:55
%S 4,18,84,393,1830,8433,38376,171957,757362,3271533,13849980,57396693,
%T 233039058,927277245,3624209748,13934877933,52843565490,197989340133,
%U 734212702164,2698456656933,9837838481154,35609804891973,128026118332596,457386991178451
%N Three-fold exponential convolution of primes with themselves (divided by 2).
%H Alois P. Heinz, <a href="/A014348/b014348.txt">Table of n, a(n) for n = 0..1000</a>
%p b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(
%p b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
%p end:
%p a:= n-> b(n, 3)/2:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 07 2018
%t b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
%t a[n_] := b[n, 3]/2;
%t a /@ Range[0, 30] (* _Jean-François Alcover_, Nov 16 2020, after _Alois P. Heinz_ *)
%Y Cf. A014347.
%K nonn
%O 0,1
%A _N. J. A. Sloane_.