login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Three-fold exponential convolution of Fibonacci numbers with themselves.
2

%I #17 Sep 08 2022 08:44:39

%S 0,0,0,6,36,210,1080,5460,26964,132294,645480,3142590,15277680,

%T 74222616,360445176,1750067430,8496115740,41243946330,200209950504,

%U 971859585804,4717557894060,22899644483430,111157568501760

%N Three-fold exponential convolution of Fibonacci numbers with themselves.

%H Nathaniel Johnston, <a href="/A014336/b014336.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1,-24,9).

%F (1/5)(3^n*Fibonacci(n) - 3*Fibonacci(2n)). - _Ralf Stephan_, May 14 2004

%F From _R. J. Mathar_, Jun 10 2013: (Start)

%F G.f.: -6*x^3 / ( (x^2-3*x+1)*(9*x^2+3*x-1) ).

%F a(n) = 6*A014337(n). (End)

%p with(combinat):A014336:=proc(n)return (1/5)*(3^n*fibonacci(n)-3*fibonacci(2*n)):end:

%p seq(A014336(n), n=0..22); # _Nathaniel Johnston_, Apr 18 2011

%o (Magma) [(1/5)*(3^n*Fibonacci(n) - 3*Fibonacci(2*n)): n in [0..30]]; // _Vincenzo Librandi_, Apr 18 2011

%Y Cf. A000045.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_