Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Sep 08 2022 08:44:39
%S 5,14,33,65,102,152,207,319,434,555,738,860,987,1219,1534,1769,2010,
%T 2343,2555,2844,3237,3649,4268,4848,5150,5457,5777,6102,7112,8253,
%U 8905,9452,10281,11174,11775,12714,13527,14359,15394,16109,17190,18335,18912,19502
%N a(n) = prime(n)*(prime(n-1)-1)/2.
%H Robert Israel, <a href="/A014302/b014302.txt">Table of n, a(n) for n = 3..10000</a>
%F a(n) = A000040(n)*A005097(n-2), if n >= 3. - _Omar E. Pol_, Sep 14 2013
%p seq(ithprime(i)*(ithprime(i-1)-1)/2, i=3..50); # _Robert Israel_, Jan 02 2016
%t Rest[(Last[#](First[#]-1))/2&/@Partition[Prime[Range[50]],2,1]] (* _Harvey P. Dale_, Sep 15 2011 *)
%o (Magma) [NthPrime(n)*(NthPrime(n-1)-1)/2: n in [3..50]]; // _Vincenzo Librandi_, Jan 03 2016
%o (PARI) a(n) = prime(n)*(prime(n-1)-1)/2; \\ _Michel Marcus_, Jan 03 2016
%o (Sage) [nth_prime(n)*(nth_prime(n-1)-1)/2 for n in (3..50)] # _G. C. Greubel_, Jun 12 2019
%Y Cf. A000040, A005097, A014303.
%K nonn,easy
%O 3,1
%A _N. J. A. Sloane_