login
Inverse of 290th cyclotomic polynomial.
1

%I #15 Apr 20 2023 14:47:29

%S 1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,

%T -1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Inverse of 290th cyclotomic polynomial.

%C Periodic with period length 290. - _Ray Chandler_, Apr 03 2017

%H Vincenzo Librandi, <a href="/A014299/b014299.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_112">Index entries for linear recurrences with constant coefficients</a>, signature (-1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1).

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%p with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);

%t CoefficientList[Series[1/Cyclotomic[290, x], {x, 0, 200}], x] (* _Vincenzo Librandi_, Apr 08 2014 *)

%o (Magma) t:=290; u:=1; m:=u*t+2; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // _Vincenzo Librandi_, Apr 08 2014

%K sign,easy

%O 0,1

%A _Simon Plouffe_