login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014251
a(n) = b(n) - c(n) where b(n) is the n-th Fibonacci number greater than 2 and c(n) is the n-th number not in sequence b( ).
1
2, 3, 4, 7, 14, 25, 45, 78, 132, 219, 362, 594, 970, 1579, 2565, 4161, 6743, 10923, 17687, 28632, 46342, 74998, 121365, 196389, 317781, 514198, 832008, 1346236, 2178274, 3524542, 5702850, 9227427, 14930313, 24157777, 39088128, 63245944, 102334112, 165580097, 267914251, 433494391
OFFSET
1,1
LINKS
MATHEMATICA
Join[{2, 3}, Table[Fibonacci[n+2] - Floor[n-2 + Log[GoldenRatio, Sqrt[5]*(Log[GoldenRatio, Sqrt[5]*(n-2)] + n-2) -5 +3/(n-2)] -2], {n, 4, 50}]] (* G. C. Greubel, Jun 18 2019 *)
PROG
(PARI) lgg(x)=log(x)/log((sqrt(5)+1)/2);
c(n)=floor(n+lgg(sqrt(5)*(lgg(sqrt(5)*n)+n)-5+3/n)-2);
for(n=2, 50, print1(if(n==2, 2, if(n==3, 3, fibonacci(n+2) - c(n-2))), ", ")) \\ G. C. Greubel, Jun 18 2019
(Magma) phi:= (1+Sqrt(5))/2; [2, 3] cat [Fibonacci(n+2) -Floor(n-2 + Log(phi, Sqrt(5)*(Log(phi, Sqrt(5)*(n-2)) + n-2) - 5 + 3/(n-2)) - 2): n in [4..50]]; // G. C. Greubel, Jun 18 2019
(Sage) [2, 3]+[fibonacci(n+2) -floor(n-2+ log( sqrt(5)*(log(sqrt(5)*(n-2), golden_ratio) +n-2) -5 +3/(n-2), golden_ratio) -2 ) for n in (4..50)] # G. C. Greubel, Jun 18 2019
CROSSREFS
Sequence in context: A049876 A049795 A329111 * A290992 A361229 A265742
KEYWORD
nonn
EXTENSIONS
Terms a(33) onward added by G. C. Greubel, Jun 18 2019
STATUS
approved