login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k).
5

%I #23 Jun 16 2016 23:27:17

%S 1,3,31,399,5871,93753,1577479,27556623,495001327,9085988613,

%T 169675769781,3213444254133,61573700137431,1191526503165729,

%U 23252920338835911,457112339182896399,9043566887755775727,179928068420530483389,3597714616543167088921

%N a(n) = Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k).

%H Vincenzo Librandi, <a href="/A014178/b014178.txt">Table of n, a(n) for n = 0..200</a>

%H C. Elsner, <a href="http://www.fq.math.ca/Papers1/43-1/paper43-1-5.pdf">On recurrence formulas for sums involving binomial coefficients</a>, Fib. Q., 43,1 (2005), 31-45.

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Asymptotic of generalized Apery sequences with powers of binomial coefficients</a>, Nov 04 2012

%F a(n) ~ (1+r)^(2*n+3/2)/r^(4*n+7/2)/(4*Pi^(3/2)*n^(3/2))*sqrt((1-r)/(2+r)), where r is positive real root of the equation (1-r)^3*(1+r)=r^4, r = 0.58252220781047... - _Vaclav Kotesovec_, Nov 04 2012

%F Recurrence: (n-1)*n^3*(29412*n^4 - 246240*n^3 + 764259*n^2 - 1042332*n + 527381)*a(n) = 2*(n-1)*(235296*n^7 - 2322864*n^6 + 9245766*n^5 - 19022421*n^4 + 21621181*n^3 - 13561627*n^2 + 4459053*n - 605664)*a(n-1) + 2*(1647072*n^8 - 20377728*n^7 + 107506956*n^6 - 315721020*n^5 + 564159163*n^4 - 627527310*n^3 + 423779896*n^2 - 158592459*n + 25128864)*a(n-2) + 2*(n-2)*(4176504*n^7 - 49583844*n^6 + 243933522*n^5 - 641841009*n^4 + 971188553*n^3 - 841622632*n^2 + 385567572*n - 72023040)*a(n-3) - 4*(n-2)*(29412*n^4 - 128592*n^3 + 202011*n^2 - 134886*n + 32480)*(n-3)^3*a(n-4). - _Vaclav Kotesovec_, Nov 04 2012

%F The expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 20*x^2 + 184*x^3 + 2060*x^4 + 26246*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 2*x^2 + 12*x^3 + 112*x^4 + 1296*x^5 + ... appear to have integer coefficients. Cf. A005258 and A005259. - _Peter Bala_, Jan 14 2016

%p f := n->sum( 'binomial(n,k)^3*binomial(n+k,k)^1','k'=0..n);

%t Table[Sum[Binomial[n,k]^3*Binomial[n+k,k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Nov 04 2012 *)

%o (PARI) a(n)=sum(k=0,n, binomial(n,k)^3*binomial(n+k,k) ); \\ _Joerg Arndt_, May 04 2013

%Y Cf. A218693, A112019, A111968, A014180, A218689, A218692, A005258, A005259.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.