login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0). 11

%I #43 Oct 03 2023 13:14:33

%S 1,5,1,55,15,1,935,295,30,1,21505,7425,925,50,1,623645,229405,32400,

%T 2225,75,1,21827575,8423415,1298605,103600,4550,105,1,894930575,

%U 358764175,59069010,5235405,271950,8330,140,1,42061737025,17398082625,3016869625,289426830,16929255,621810,14070,180,1

%N Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).

%C Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.

%C T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).

%C For the definition of the Bell transform see A264428 and the link. - _Peter Luschny_, Jan 16 2016

%H G. C. Greubel, <a href="/A013988/b013988.txt">Rows n = 1..50 of the triangle, flattened</a>

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3

%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%H Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));

%F T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n<m, and T(n, 0) = 0, T(1, 1) = 1.

%F E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.

%F Sum_{k=1..n} T(n, k) = A028844(n).

%e Triangle begins as:

%e 1;

%e 5, 1;

%e 55, 15, 1;

%e 935, 295, 30, 1;

%e 21505, 7425, 925, 50, 1;

%e 623645, 229405, 32400, 2225, 75, 1;

%e 21827575, 8423415, 1298605, 103600, 4550, 105, 1;

%e 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;

%t (* First program *)

%t rows = 10;

%t b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];

%t A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;

%t A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)

%t (* Second program *)

%t T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]];

%t Table[T[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Oct 03 2023 *)

%o (Sage) # uses[inverse_bell_matrix from A264428]

%o # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.

%o inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # _Peter Luschny_, Jan 16 2016

%o (Magma)

%o function T(n,k) // T = A013988

%o if k eq 0 then return 0;

%o elif k eq n then return 1;

%o else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1);

%o end if;

%o end function;

%o [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 03 2023

%Y Cf. A008277, A008543, A049224, A264428.

%Y Cf. A028844 (row sums).

%Y Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).

%K easy,nonn,tabl

%O 1,2

%A _Wolfdieter Lang_

%E New name from _Peter Luschny_, Jan 16 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 10:50 EDT 2024. Contains 375264 sequences. (Running on oeis4.)