Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 09 2022 22:27:19
%S 1,2,6,32,600,20544,1218224,160241152,42129744768,21293228876800,
%T 22220602090444032,45959959305969143808,188702851949391611599872,
%U 1566370829898884830446395392,25801614282517307546368494213120,851300764257208779000509484701188096
%N Number of tournaments on n nodes with a unique winner.
%H Andrew Howroyd, <a href="/A013976/b013976.txt">Table of n, a(n) for n = 1..20</a>
%H Yaakov Malinovsky and John W. Moon, <a href="https://arxiv.org/abs/2208.14932">On Round-Robin Tournaments with a Unique Maximum Score and Some Related Results</a>, arXiv:2208.14932 [math.CO], 2022.
%H <a href="/index/To#tournament">Index entries for sequences related to tournaments</a>
%o (PARI)
%o Winners(n)={
%o local(M=Map(Mat([x^0, 1])));
%o my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
%o my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p,i)*(1-x^i)), v));
%o my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (k+x*(t-k))*x^i+q, binomial(t, k)*v, e+k))));
%o for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
%o Mat(M);
%o }
%o a(n)={my(M=Winners(n)); sum(i=1, matsize(M)[1], if(pollead(M[i,1])==1, M[i,2]))} \\ _Andrew Howroyd_, Feb 29 2020
%Y Cf. A125031.
%K nonn,nice
%O 1,2
%A Michael Stob (stob(AT)udu.calvin.edu)
%E a(1)=1 inserted and a(12) and beyond from _Andrew Howroyd_, Feb 28 2020