login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^(3*n + 1).
4

%I #24 Sep 08 2022 08:44:38

%S 3,81,2187,59049,1594323,43046721,1162261467,31381059609,847288609443,

%T 22876792454961,617673396283947,16677181699666569,450283905890997363,

%U 12157665459056928801,328256967394537077627,8862938119652501095929

%N a(n) = 3^(3*n + 1).

%H Vincenzo Librandi, <a href="/A013732/b013732.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (27).

%F From _Philippe Deléham_, Nov 25 2008: (Start)

%F a(n) = 27*a(n-1); a(0)=3.

%F G.f.: 3/(1-27*x). (End)

%p seq(3^(3*n+1),n=0..15); # _Nathaniel Johnston_, Jun 26 2011

%t NestList[27#&,3,20] (* _Harvey P. Dale_, Apr 01 2018 *)

%o (Magma) [3^(3*n+1): n in [0..25]]; // _Vincenzo Librandi_, May 25 2011

%o (PARI) a(n)=3^(3*n+1) \\ _Charles R Greathouse IV_, Jul 11 2016

%Y Cf. A013730, A013733, A013734.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_