login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for zeta(4).
23

%I #30 Jul 09 2024 20:34:27

%S 1,12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,1,1,1,1,3,2,4,2,2,22,1,

%T 13,5,1,4,2,1,3,1,1,1,6,11,40,1,7,5,2,4,1,2,3,14,9,1,33,78,1,12,4,1,2,

%U 551,1,1,1,1,1,1,2,1,9,2,7,3,1,3,2,15,1,1,2,2

%N Continued fraction for zeta(4).

%H T. D. Noe, <a href="/A013680/b013680.txt">Table of n, a(n) for n = 0..9999</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Z#zeta_function">Index entries for zeta function</a>

%e zeta(4) = 1 + 1/(12 + 1/(6 + 1/(1 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 29 2009

%t ContinuedFraction[Zeta[4],80] (* _Harvey P. Dale_, Oct 13 2013 *)

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4/90); for (n=1, 20000, write("b013680.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 29 2009

%Y Cf. A013662 (zeta(4)). - _Harry J. Smith_, Apr 29 2009

%Y Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013681-A013696.

%K nonn,cofr

%O 0,2

%A _N. J. A. Sloane_

%E Offset changed by _Andrew Howroyd_, Jul 09 2024