login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients in expansion of (1+12x)^n.
1

%I #25 Oct 18 2015 12:51:38

%S 1,1,12,1,24,144,1,36,432,1728,1,48,864,6912,20736,1,60,1440,17280,

%T 103680,248832,1,72,2160,34560,311040,1492992,2985984,1,84,3024,60480,

%U 725760,5225472,20901888,35831808,1,96,4032,96768,1451520,13934592,83607552,286654464,429981696

%N Triangle of coefficients in expansion of (1+12x)^n.

%C T(n,k) equals the number of n-length words on {0,1,...,12} having n-k zeros. - _Milan Janjic_, Jul 24 2015

%F G.f.: 1 / (1 - x(1+12y)).

%F T(n,k) = 12^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*11^(n-i). Row sums are 13^n = A001022. - _Mircea Merca_, Apr 28 2012

%e 1;

%e 1, 12;

%e 1, 24, 144;

%e 1, 36, 432, 1728;

%e 1, 48, 864, 6912, 20736;

%e 1, 60, 1440, 17280, 103680, 248832;

%e 1, 72, 2160, 34560, 311040, 1492992, 2985984;

%e 1, 84, 3024, 60480, 725760, 5225472, 20901888, 35831808;

%p T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+12*x)^n):

%p seq(T(n), n=0..10); # _Alois P. Heinz_, Jul 24 2015

%t Flatten[Table[CoefficientList[(1+12x)^n,x],{n,0,10}]] (* _Harvey P. Dale_, Oct 18 2015 *)

%K tabl,nonn,easy

%O 0,3

%A _N. J. A. Sloane_