login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n - prevprime(4^n).
2

%I #24 Sep 01 2019 11:01:07

%S 1,3,3,5,3,3,3,15,5,3,3,3,5,57,35,5,41,5,45,87,11,17,21,59,27,47,33,5,

%T 27,93,57,59,5,23,35,93,35,15,11,65,57,35,35,299,33,83,3,17,51,15,33,

%U 17,117,59,21,75,11,3,5,119,3,59,137,159,5,347,45,113,105,27,111

%N a(n) = 4^n - prevprime(4^n).

%H Daniel Starodubtsev, <a href="/A013606/b013606.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000302(n) - A104089(n). - _Michel Marcus_, Sep 01 2019

%p seq(4^i-prevprime(4^i),i=1..100);

%t #-NextPrime[#,-1]&/@(4^Range[80]) (* _Harvey P. Dale_, Dec 13 2016 *)

%o (PARI) a(n) = 4^n - precprime(4^n); \\ _Michel Marcus_, Sep 01 2019

%Y Cf. A000302, A104089.

%K nonn

%O 1,2

%A James Kilfiger (mapdn(AT)csv.warwick.ac.uk)