Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 07 2023 04:49:58
%S 0,105,385,1365,1785,2805,3135,6545,6545,10465,10465,10465,10465,
%T 10465,11305,11305,11305,11305,11305,11305,11305,15015,11305,17255,
%U 17255,20615,20615,26565,26565,26565,26565,26565,26565,26565,26565,26565
%N Smallest order of cyclotomic polynomial containing n or -n as a coefficient.
%C This sequence is infinite - see the Lang reference.
%C An alternative version would start with 1 rather than 0.
%D Bateman, C. Pomerance and R. C. Vaughan, Colloq. Math. Soc. Janos Bolyai, 34 (1984), 171-202.
%D S. Lang, Algebra: 3rd edition, Addison-Wesley, 1993, p. 281.
%D Maier, Prog. Math. 85 (Birkhaueser), 1990, 349-366.
%D Maier, Prog. Math. 139 (Birkhaueser) 1996, 633-638.
%H T. D. Noe, <a href="/A013594/b013594.txt">Table of n, a(n) for n = 1..1000</a>
%H P. Erdős and R. C. Vaughan, <a href="http://www.renyi.hu/~p_erdos/1974-03.pdf">Bounds for the r-th coefficients of cyclotomic polynomials</a>, J. London Math. Soc. (2) 8 (1974), 393-400 (MR50 #9835; Zentralblatt 295.10014).
%H R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
%H H. Maier, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa64/aa6432.pdf">Cyclotomic polynomials with large coefficients</a>, Acta Arith. 64 (1993), 227-235.
%H H. Maier, <a href="http://dx.doi.org/10.1023/A:1015293917813">Cyclotomic polynomials whose orders contain many prime factors</a>, Period. Math. Hungar. 43 (2001), 155-169.
%H H. L. Montgomery and R. C. Vaughan, <a href="http://dx.doi.org/10.1017/S0017089500006145">The order of magnitude of the mth coefficients of cyclotomic polynomials</a>, Glasgow Math. J. 27 (1985), 143-159.
%H R. C. Vaughan, <a href="http://dx.doi.org/10.1307/mmj/1029001352">Bounds for the coefficients of cyclotomic polynomials</a>, Michigan Math. J. 21 (1974), 289-295 (1975).
%H M. Wallner, <a href="http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf">Lattice Path Combinatorics</a>, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a>
%e a(2)=105 because cyclotomic(105) contains "-2" as coefficient, but for n < 105 cyclotomic(n) does not contain 2 or -2.
%e x^105 - 1 = ( - 1 + x)(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)(1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12)(1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + x^19 - x^23 + x^24)(1 + x + x^2 - x^5 - x^6 - 2x^7 - x^8 - x^9 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 - x^20 - x^22 - x^24 - x^26 - x^28 + x^31 + x^32 + x^33 + x^34 + x^35 + x^36 - x^39 - x^40 - 2x^41 - x^42 - x^43 + x^46 + x^47 + x^48)
%t Table[Position[Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 10000}], j][[1]], {j, 1, 10}] - _Ian Miller_, Feb 25 2008
%o (PARI) nm=6545; m=0; forstep(n=1, nm, 2, if(issquarefree(n), p=polcyclo(n); o=poldegree(p); for(k=0, o, a=abs(polcoeff(p, k)); if(a>m, m=a; print([m, n, factor(n)])))))
%Y Cf. A046887, A013595, A013596, A063696, A063698, A134518, A137979.
%K nonn,easy,nice
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Eric W. Weisstein_
%E Further terms from _T. D. Noe_, Oct 29 2007