login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(arctan(x)/exp(x)).
1

%I #22 Aug 04 2024 04:16:20

%S 1,1,-1,-4,9,60,-175,-2154,6433,140984,-404063,-14300174,38333361,

%T 2070386084,-5007071823,-406148697538,844312637249,103808494182512,

%U -173366392362431,-33528470038125974,40208654504239441

%N Expansion of e.g.f. exp(arctan(x)/exp(x)).

%C The inner function is arctan(x)/exp(x) = 2*x/2! - 6*x^2/2! + 4*x^3/3! + 20*x^4/4! + 54*x^5/5! - 770*x^6/6! - 2232*x^7/7! + ...

%H G. C. Greubel, <a href="/A013571/b013571.txt">Table of n, a(n) for n = 0..400</a>

%e exp(arctan(x)/exp(x)) = 1 + x - 1/2!*x^2 - 4/3!*x^3 + 9/4!*x^4 + 60/5!*x^5 + ...

%t Table[n!*SeriesCoefficient[Exp[ArcTan[x]/Exp[x]], {x, 0, n}], {n,0,50}] (* _G. C. Greubel_, Nov 19 2016 *)

%o (PARI) my(x='x + O('x^50)); Vec(serlaplace(exp(atan(x)/exp(x)))) \\ _G. C. Greubel_, Nov 19 2016

%K sign

%O 0,4

%A Patrick Demichel (patrick.demichel(AT)hp.com)