login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of [x^n] in the Taylor expansion exp(cot(x)-coth(x))= 1-2*x/3 +2x^2/9 -4*x^3/81 +2*x^4/243 -136*x^5/25515 +676*x^6/229635 -...
1

%I #11 Nov 12 2016 08:12:11

%S 1,-2,2,-4,2,-136,676,-656,62,-47672,2714132,-3091664,7223932,

%T -16788784,120994136,-15764283616,13831453742,-3729134588968,

%U 463898158095404,-119174509180016

%N Numerator of [x^n] in the Taylor expansion exp(cot(x)-coth(x))= 1-2*x/3 +2x^2/9 -4*x^3/81 +2*x^4/243 -136*x^5/25515 +676*x^6/229635 -...

%C The inner function is cot(x)-coth(x) = -2x/3 -4x^5/945 -4x^9/93555 -8x^13/18243225 -...

%H Harvey P. Dale, <a href="/A013551/b013551.txt">Table of n, a(n) for n = 0..485</a>

%t Numerator[CoefficientList[Series[Exp[Cot[x]-Coth[x]],{x,0,20}],x] ] (* _Harvey P. Dale_, Feb 16 2014 *)

%K sign,frac

%O 0,2

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E Name edited by _R. J. Mathar_, Dec 21 2011