login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

tan(arcsinh(x)+log(x+1))=2*x-1/2!*x^2+17/3!*x^3-54/4!*x^4+685/5!*x^5...
0

%I #7 Feb 03 2015 11:15:47

%S 0,2,-1,17,-54,685,-4950,66265,-757400,11694805,-178921800,3236694875,

%T -61062375000,1283939654075,-28563558478000,688487451426125,

%U -17578710756204000,478975365932337625,-13780824752845800000

%N tan(arcsinh(x)+log(x+1))=2*x-1/2!*x^2+17/3!*x^3-54/4!*x^4+685/5!*x^5...

%F a(n) ~ n! * (1+r) * sqrt(1 + r^2) * sin(log((1+r) * (r + sqrt(1 + r^2))))^2 / ((1+r + sqrt(1 + r^2)) * r^(n+1)), where r = (-1 - exp(Pi/2) + exp(-Pi/4) * sqrt(2 + 2*exp(Pi/2))) / (2 + exp(Pi/2)) = -0.62494974755855577154785... . - _Vaclav Kotesovec_, Feb 03 2015

%t CoefficientList[Series[Tan[ArcSinh[x] + Log[1 + x]], {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Feb 03 2015 *)

%K sign

%O 0,2

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E Prepended missing a(0)=0 from _Vaclav Kotesovec_, Feb 03 2015