login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012930
arcsinh(tan(x)+log(x+1)) = 2*x-1/2!*x^2-4/3!*x^3+18/4!*x^4+138/5!*x^5...
0
0, 2, -1, -4, 18, 138, -1425, -7368, 207340, 481578, -49899645, 122677012, 17081066310, -160273109518, -7677995678717, 153514412519392, 4141750812789720, -158348457721397742, -2343499454063177433
OFFSET
0,2
FORMULA
Lim sup n->infinity (|a(n)|/n!)^(1/n) = 1.88681124646597... = abs(1/r), where r is the complex root of the equation log(r+1)*cos(r)*(2*sin(r) + log(r+1)*cos(r)) = -1. - Vaclav Kotesovec, Nov 02 2013
MATHEMATICA
CoefficientList[Series[ArcSinh[Tan[x]+Log[x+1]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 01 2013 *)
CROSSREFS
Sequence in context: A192494 A013156 A012925 * A013162 A010252 A032105
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Prepended missing a(0)=0 from Vaclav Kotesovec, Nov 01 2013
STATUS
approved