login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: -log(cos(x)*cos(x)) (even powers only).
3

%I #44 Sep 29 2019 09:53:28

%S 0,2,4,32,544,15872,707584,44736512,3807514624,419730685952,

%T 58177770225664,9902996106248192,2030847773013704704,

%U 493842960380415967232,140503203207887919775744,46238368375619195682947072,17427925514250338592341622784,7458815407441059142195019251712

%N E.g.f.: -log(cos(x)*cos(x)) (even powers only).

%C Of course this is 2*log(sec(x)), so a(n) = 2*A000182(n).

%H Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, <a href="https://arxiv.org/abs/1202.1203">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, arXiv:1202.1203 [math.NT], 2012. See p. 21.

%H Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, <a href="https://web.math.rochester.edu/misc/ojac/vol8/68.pdf">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, Online Journal of Analytic Combinatorics, Issue 8, 2013. See p. 21.

%H N. J. A. Sloane, <a href="/A001469/a001469_1.pdf">Rough notes on Genocchi numbers</a>

%F G.f.: 2/Q(0) where Q(k) = 1 + x*(2*k + 1)*(2*k + 2)/( -1 + x*(2*k + 2)*(2*k + 3)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 11 2013

%F G.f.: (2/G(0) - 1)*sqrt(-x), where G(k)= 2 + 2*sqrt(-x) - 4*x*(k+1)^2/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 29 2013

%F G.f.: 2*x*T(0), where T(k) = 1 - (k+1)*(k+2)*x/((k+1)*(k+2)*x - 1/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 15 2013

%F a(n) ~ 2^(2*n+2) * (2*n-1)! / Pi^(2*n). - _Vaclav Kotesovec_, Feb 08 2015

%F E.g.f. (odd powers): y = 2*tan(x). - _Stanislav Sykora_, Nov 28 2016

%e G.f. = x^2+1/6*x^4+2/45*x^6+17/1260*x^8+62/14175*x^10+691/467775*x^12+...

%t nn = 20; Table[(CoefficientList[Series[-Log[Cos[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Feb 08 2015 *)

%Y Cf. A000182.

%K nonn

%O 0,2

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E Corrected by _D. S. McNeil_ and _N. J. A. Sloane_, Dec 17 2011 (The signs were wrong and the initial term was missing)