login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

tan(tan(x)*arcsin(x))=2/2!*x^2+12/4!*x^4+430/6!*x^6+26040/8!*x^8...
1

%I #12 Feb 06 2015 09:32:25

%S 0,2,12,430,26040,2661178,402231940,84456360742,23476965450736,

%T 8341678414816242,3686586514781799292,1982979948714026781726,

%U 1275341677617693817452200,966341800352400737116306986

%N tan(tan(x)*arcsin(x))=2/2!*x^2+12/4!*x^4+430/6!*x^6+26040/8!*x^8...

%H Vaclav Kotesovec, <a href="/A012378/b012378.txt">Table of n, a(n) for n = 0..220</a>

%F a(n) ~ 2 * (2*n)! / ((Pi/sin(2*r) + tan(r)/sqrt(1-r^2)) * r^(2*n+1)), where r = 0.925530521691094119047741289850... is the root of the equation tan(r)*arcsin(r) = Pi/2. - _Vaclav Kotesovec_, Feb 06 2015

%t nn = 20; Table[(CoefficientList[Series[Tan[ArcSin[x]*Tan[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Feb 06 2015 *)

%K nonn

%O 0,2

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E a(0)=0 prepended by _Vaclav Kotesovec_, Feb 06 2015