%I #21 Sep 08 2022 08:44:38
%S 0,0,2,-3,12,-40,-2,1281,-20328,247176,-2577798,24949485,-189717660,
%T 500394960,24648965430,-804228701535,18028676700720,-340430894094480,
%U 5649443088034290,-76409572412090115,580555717060321980
%N Expansion of e.g.f. tanh(arcsin(x)*log(x+1)).
%H G. C. Greubel, <a href="/A012311/b012311.txt">Table of n, a(n) for n = 0..446</a>
%e E.g.f. = 2*x^2/2! - 3*x^3/3! + 12*x^4/4! - 40*x^5/5! + ...
%p seq(coeff(series(factorial(n)*tanh(arcsin(x)*log(x+1)),x,n+1), x, n), n = 0 .. 20); # _Muniru A Asiru_, Oct 25 2018
%t With[{nn=20},CoefficientList[Series[Tanh[ArcSin[x]Log[x+1]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 05 2013 *)
%o (PARI) x='x+O('x^30); concat([0,0], Vec(serlaplace(tanh(asin(x)* log(x+1))))) \\ _G. C. Greubel_, Oct 25 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Tanh(Arcsin(x)*Log(x+1)) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // _G. C. Greubel_, Oct 25 2018
%K sign
%O 0,3
%A Patrick Demichel (patrick.demichel(AT)hp.com)
%E Prepended two zeros, _Joerg Arndt_, Feb 05 2013