login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012308
Expansion of e.g.f. cos(arcsin(x)*log(x+1))=1-12/4!*x^4+60/5!*x^5-450/6!*x^6+2940/7!*x^7...
1
1, 0, 0, 0, -12, 60, -450, 2940, -23408, 179424, -1610280, 13910160, -137455032, 1245692448, -12516311808, 93103526880, -527152105728, -11362927602816, 427180646000448, -13403925787199616, 328077695114329728
OFFSET
0,5
LINKS
EXAMPLE
E.g.f. = 1 - 12*x^4/4! + 60*x^5/5! - 450*x^6/6! + 2940*x^7/7! + ...
MAPLE
seq(coeff(series(factorial(n)*cos(arcsin(x)*log(x+1)), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Cos[ArcSin[x] Log[x + 1]], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Oct 25 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(cos(asin(x)*log(x+1)))) \\ G. C. Greubel, Oct 25 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Cos(Arcsin(x)*Log(x+1)) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 25 2018
CROSSREFS
Sequence in context: A012518 A012315 A009062 * A009154 A012313 A012517
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved