login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012269
Expansion of e.g.f.: arctan(log(x+1)*log(x+1)).
1
0, 0, 2, -6, 22, -100, 308, 1512, -51144, 869472, -12406608, 155319120, -1563312720, 6008315040, 296596492320, -12739805608320, 357984190838400, -8317532611046400, 160961311569285120, -2183410259228574720
OFFSET
0,3
LINKS
FORMULA
a(n) ~ (n-1)! * (-1)^(n+1) * sin(n*arctan(sin(1/sqrt(2)) / (cos(1/sqrt(2)) - exp(1/sqrt(2))))) * (exp(1/sqrt(2)) / sqrt(1 + exp(sqrt(2)) - 2*exp(1/sqrt(2)) * cos(1/sqrt(2))))^n. - Vaclav Kotesovec, Jan 02 2014
EXAMPLE
arctan(log(x+1)*log(x+1)) = 2/2!*x^2-6/3!*x^3+22/4!*x^4-100/5!*x^5...
MAPLE
seq(coeff(series(factorial(n)*arctan(log(x+1)*log(x+1)), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[ArcTan[Log[x+1]^2], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Feb 24 2013 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(serlaplace(atan(log(x+1)^2)))) \\ G. C. Greubel, Oct 28 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Arctan(Log(x+1)^2) )); [0, 0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Oct 28 2018
CROSSREFS
Sequence in context: A189844 A189282 A318974 * A012272 A009789 A012271
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Corrected and definition clarified by Harvey P. Dale, Feb 24 2013
STATUS
approved