login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

cosh(arcsin(tanh(x)))=1+1/2!*x^2-3/4!*x^4+21/6!*x^6-263/8!*x^8...
1

%I #10 Mar 08 2015 17:52:11

%S 1,1,-3,21,-263,4841,-99723,-199939,501445617,-101818966319,

%T 19731909099757,-4192563651606299,1009030667701246697,

%U -277080625752723191879,86724157841631252590437,-30813037783471577493355059,12363651257099764677344554977

%N cosh(arcsin(tanh(x)))=1+1/2!*x^2-3/4!*x^4+21/6!*x^6-263/8!*x^8...

%F Observe that arcsin(tanh(x)) = int {0..x} 1/cosh(t) so the generating function for this sequence is cosh( int {0..x} 1/cosh(t) ). Note the similarity to the generating function for A000364: cosh( int {0..x} 1/cos(t) ) = 1+x^2/2!+5*x^4/4!+61*x^6/6!+... - Peter Bala, Aug 24 2011.

%t With[{nn=30},Take[CoefficientList[Series[Cosh[ArcSin[Tanh[x]]],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Mar 08 2015 *)

%K sign

%O 0,3

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E More terms from _Harvey P. Dale_, Mar 08 2015