login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A012077 tan(arcsin(tan(x))) = x+5/3!*x^3+121/5!*x^5+6845/7!*x^7+698161/9!*x^9... 2
1, 5, 121, 6845, 698161, 111973685, 25947503401, 8200346492525, 3389281372287841, 1774459993676715365, 1147649139272698443481, 898537335398420151634205, 837511978485668107020082321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..215

FORMULA

a(n) = Sum_(m=0..n, binomial(2*m,m)*Sum_(j=0..2*n-2*m, binomial(j+2*m,2*m)*(j+2*m+1)!*2^(2*n-j-4*m)*(-1)^(n+m+j)*stirling2(2*n+1,j+2*m+1))) /((2*n+1)!), n>0. - Vladimir Kruchinin, Jun 15 2011

From Peter Luschny, May 13 2017 (Start)

a(n) = (2*n+1)! [x^(2*n+1)] tan(x)/sqrt(1-tan(x)^2),

a(n) = (2*n+1)! [x^(2*n+1)] tan(arcsin(tan(x))),

a(n) = (2*n+1)! [x^(2*n+1)] sinh(arctanh(tan(x))).

(End)

MAPLE

S:= series(tan(x)/sqrt(1-tan(x)^2), x, 102):

seq(coeff(S, x, 2*j+1)*(2*j+1)!, j=0..50); # Robert Israel, May 08 2017

MATHEMATICA

nn = 20; Table[(CoefficientList[Series[Tan[x]/Sqrt[1 - Tan[x]^2], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 06 2015 *)

With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[Tan[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Mar 22 2015 *)

PROG

(Maxima)

a(n):=sum(binomial(2*m, m)*sum(binomial(j+2*m, 2*m)*(j+2*m+1)!*2^(2*n-j-4*m)*(-1)^(n+m+j)*stirling2(2*n+1, j+2*m+1), j, 0, 2*n-2*m), m, 0, n)/((2*n+1)!); /* Vladimir Kruchinin, Jun 15 2011 */

CROSSREFS

Sequence in context: A012179 A012026 A012190 * A012046 A012151 A012156

Adjacent sequences: A012074 A012075 A012076 * A012078 A012079 A012080

KEYWORD

nonn

AUTHOR

Patrick Demichel (patrick.demichel(AT)hp.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 14:52 EDT 2023. Contains 361599 sequences. (Running on oeis4.)