login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012065
Expansion of e.g.f: tan(arcsin(arcsin(x))).
1
1, 4, 84, 4152, 370128, 51861888, 10494283968, 2894815734912, 1043916757274880, 476720372375608320, 268870416029396075520, 183537887154798761809920, 149132786692921038502318080
OFFSET
0,2
LINKS
FORMULA
a(n) = ((2*n+1)!*Sum_{m=0..n} binomial(m-1/2,m)*(2*m+1)!*(Sum_{j=0..n-m} (-1)^(j)*(Sum_{i=0..2*j} (2^i*stirling1(2*m+1+i,2*m+1) *binomial(2*j+2*m,2*m+i))/(2*m+1+i)!))*binomial(n-1/2,n-j-m))))). - Vladimir Kruchinin, Jun 15 2011
E.g.f.: arcsin(x) / sqrt(1-arcsin(x)^2). - Vaclav Kotesovec, Feb 06 2015
a(n) ~ (2*n+1)! * sqrt(cos(1)) / (sqrt(Pi*n) * (sin(1))^(2*n+3/2)). - Vaclav Kotesovec, Feb 06 2015
EXAMPLE
tan(arcsin(arcsin(x))) = x + 4/3!*x^3 + 84/5!*x^5 + 4152/7!*x^7 + 370128/9!*x^9 ...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[ArcSin[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Oct 11 2014 *)
PROG
(Maxima)
a(n):=((2*n+1)!*sum(binomial(m-1/2, m)*(2*m+1)!*(sum((-1)^(j)*(sum((2^i*stirling1(2*m+1+i, 2*m+1)*binomial(2*j+2*m, 2*m+i))/(2*m+1+i)!, i, 0, 2*j))*binomial(n-1/2, n-j-m), j, 0, n-m)), m, 0, n)); /* Vladimir Kruchinin, Jun 15 2011 */
(PARI) x='x+O('x^50); v=Vec(serlaplace(asin(x) / sqrt(1-asin(x)^2))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Apr 11 2017
CROSSREFS
Sequence in context: A361542 A024260 A099706 * A012139 A012037 A012025
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved