Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 12 2017 23:09:22
%S 0,1,2,46,1112,55816,3804272,372397936,47682319232,7841034902656,
%T 1601250315636992,398250217200414976,118406090377889303552,
%U 41478295178427681104896,16904918898000336224294912
%N E.g.f.: -tan(log(cos(x))), even powers only.
%C The highest power of 2 dividing a(n) appears to be A011371(n). The odd part starts 1, 1, 23, 139, 6977, 237767, 23274871, 372518119, 61258085177,.... - _Ralf Stephan_, Aug 14 2013
%H G. C. Greubel, <a href="/A012001/b012001.txt">Table of n, a(n) for n = 0..235</a>
%e -tan(log(cos(x))) = 1/2!*x^2 + 2/4!*x^4 + 46/6!*x^6 + 1112/8!*x^8 + ...
%t With[{nn = 50}, Take[CoefficientList[Series[-Tan[Log[Cos[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* _G. C. Greubel_, Apr 12 2017 *)
%o (PARI) a(n)={n*=2; my(x='x+O('x^(n+1))); polcoeff( serlaplace( -tan(log(cos(x)))), n); } \\ _Ralf Stephan_, Aug 14 2013
%K nonn
%O 0,3
%A Patrick Demichel (patrick.demichel(AT)hp.com)
%E Checked by _N. J. A. Sloane_, Dec 16 2011