%I #22 Jun 25 2022 12:53:39
%S 2,5,8,12,18,24,30,36,42,52,60,68,78,84,90,100,112,120,128,138,144,
%T 152,162,172,186,198,204,210,216,222,240,258,268,276,288,300,308,320,
%U 330,340,352,360,372,384,390,396,410,434,450,456,462,472,480,492,508,520
%N 2 followed by the numbers that are the sum of 2 successive primes.
%C All the terms in the sequence, except for a(2), are even. - _K. D. Bajpai_, Aug 26 2014
%D Archimedeans Problems Drive, Eureka, 26 (1963), 12.
%H K. D. Bajpai, <a href="/A011974/b011974.txt">Table of n, a(n) for n = 1..10000</a>
%F Essentially same as A001043.
%e From _K. D. Bajpai_, Aug 26 2014: (Start)
%e a(6) = 24 is in the sequence because prime(5) + prime(6) = 11 + 13 = 24.
%e a(8) = 36 is in the sequence because prime(7) + prime(8) = 17 + 19 = 36.
%e (End)
%t Join[{2},Total/@Partition[Prime[Range[40]],2,1]] (* _Harvey P. Dale_, May 04 2013 *)
%Y Cf. A000040.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_
%E The terms a(40) to a(56) from _K. D. Bajpai_, Aug 26 2014