Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:44:37
%S 0,0,0,0,1,8,24,56,112,201,336,528,792,1144,1601,2184,2912,3808,4896,
%T 6201,7752,9576,11704,14168,17001,20240,23920,28080,32760,38001,43848,
%U 50344,57536,65472,74201,83776
%N a(n) = floor(n*(n-1)*(n-2)*(n-3)/15).
%H Vincenzo Librandi, <a href="/A011925/b011925.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1,1,-4,6,-4,1).
%F From _R. J. Mathar_, Apr 15 2010: (Start)
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) - 4*a(n-6) + 6*a(n-7) - 4*a(n-8) + a(n-9).
%F G.f.: x^4*(x^4 + 4*x^3 - 2*x^2 + 4*x + 1) / ( (1-x)^5*(x^4 + x^3 + x^2 + x + 1) ). (End)
%p A011925:=n->floor(n*(n-1)*(n-2)*(n-3)/15); seq(A011925(n), n=0..50); # _Wesley Ivan Hurt_, Jan 31 2014
%t CoefficientList[Series[x^4*(x^4+4*x^3-2*x^2+4*x+1)/((1-x)^5*(x^4+x^3+x^2+x+1)),{x,0,50}],x] (* _Vincenzo Librandi_, Jun 19 2012 *)
%o (Magma) [Floor(n*(n-1)*(n-2)*(n-3)/15): n in [0..45]]; // _Vincenzo Librandi_, Jun 19 2012
%K nonn,easy
%O 0,6
%A _N. J. A. Sloane_