login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*(n-1)*(n-2)/16).
2

%I #26 Oct 17 2024 08:25:43

%S 0,0,0,0,1,3,7,13,21,31,45,61,82,107,136,170,210,255,306,363,427,498,

%T 577,664,759,862,975,1096,1228,1370,1522,1685,1860,2046,2244,2454,

%U 2677,2913,3163,3427,3705,3997,4305

%N a(n) = floor(n*(n-1)*(n-2)/16).

%H Vincenzo Librandi, <a href="/A011898/b011898.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).

%F From _R. J. Mathar_, Apr 15 2010: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-16) - 3*a(n-17) + 3*a(n-18) - a(n-19).

%F G.f.: x^4*(1+x^2+2*x^6-2*x^7+3*x^8-x^9+x^11+x^12-x^13+x^14) / ( (1-x)^4*(1+x)*(1+x^2)*(1+x^4)*(1+x^8) ). (End)

%t Table[Floor[(n(n-1)(n-2))/16],{n,0,50}] (* _Harvey P. Dale_, May 16 2012 *)

%o (Magma) [Floor(n*(n-1)*(n-2)/16): n in [0..50]]; // _Vincenzo Librandi_, May 21 2012

%o (PARI) a(n) = n*(n-1)*(n-2)\16; \\ _Michel Marcus_, Jan 14 2018

%o (SageMath) [3*binomial(n,3)//8 for n in range(51)] # _G. C. Greubel_, Oct 16 2024

%Y Cf. A011886.

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_