login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor( n*(n-1)*(n-2)/14 ).
3

%I #19 Oct 17 2024 15:48:22

%S 0,0,0,0,1,4,8,15,24,36,51,70,94,122,156,195,240,291,349,415,488,570,

%T 660,759,867,985,1114,1253,1404,1566,1740,1926,2125,2338,2564,2805,

%U 3060,3330,3615,3916,4234,4568,4920,5289,5676,6081,6505,6949,7412,7896

%N a(n) = floor( n*(n-1)*(n-2)/14 ).

%H G. C. Greubel, <a href="/A011896/b011896.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,1,-3,3,-1).

%F G.f.: x^4*(1+x-x^2+2*x^3-x^4+x^5)/((1-x)^3*(1-x^7)).

%F a(2-n) = (-1)*A055610(n).

%t Table[Floor[(n(n-1)(n-2))/14],{n,0,50}] (* or *)

%t LinearRecurrence[{3,-3,1,0,0,0,1,-3,3,-1},{0,0,0,0,1,4,8,15,24,36},50] (* _Harvey P. Dale_, Jan 03 2024 *)

%o (PARI) a(n)=n*(n-1)*(n-2)\14

%o (Magma) [Floor(3*Binomial(n,3)/7): n in [0..50]]; // _G. C. Greubel_, Oct 16 2024

%o (SageMath) [3*binomial(n,3)//7 for n in range(51)] # _G. C. Greubel_, Oct 16 2024

%Y Cf. A011886, A055610.

%K nonn

%O 0,6

%A _N. J. A. Sloane_

%E Additional comments from _Michael Somos_, Jun 02 2000.